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When finite deformations [strains 1 in elastic-plastic bodies are studied, 
the choice of the tensor which describes the total deformations becomes 
essential, as well as the determination of the separate tensors of the 
elastic and plastic deformations. 

Independently of the choice of the tensor which describes the total 
deformations we shall subject the elastic and plastic deformation tensors 
to the following conditions: 

1) They shall be introduced analogously to the total deformation 
tensor. 

Indeed, the plastic deformation tensor is the total deformation 
tensor for processes which end in complete unloading. At that time, the 
entire deformed state can be assumed to be elastic if one does not refer 
it to the actual initial state but to the state which corresponds to 
complete unloading from the given state. 

2) The elastic and plastic deformation tensors shall be introduced 

independently from one another. 

Let, for instance, the deformations be described by the tensor (: 

where 

^i^j E=eij3 3 

wherein ii are the unit vectors, fixed in the medium. forming the basis 
of the Lagrangean coordinate system c ’ , bij are the components of the 
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metric tensor G in the final (deformed) state of the material; gi, iij are 
the same quantities in the original state; wi, wi are the components of 
the displacement vector w = wi Gi = ~~4. 

Let us study, together with the initial state (‘) and the final state 
(“). the state (*). which may be obtained from the state (“) by the pro- 
cess of complete unloading. The components of the metric tensor G in the 
state (*) shall be denoted by iij, , and the base vectors of the Lagrangean 
coordinate system by iii 

The elastic 6 e and the plastic CP deformation tensors are usually ex- 
pressed in terms of the following formulas: 

(&ijle = f ( iij - iij)s 

(eij)P = -+ (iij -- iij) 
(2) 

Herein, the following equation holds for the covariant components of 

the tensors 6 e, l P and c. which refer, respectively, to the bases a^$, a’i 
and Gil 

(eij)” + (Eij)’ = t?ij (3) 

This equation is independent of the choice of the Lagrangean coordi- 
nate system 6 i and transforms tensorially from the system 5 i to another 
Lagrangean system 1 i. It cannot. however. be written as a tensor relation 
between E, c ’ and ep and is not satisfied for contravariant and mixed 
components of these tensors. The equation, also, does not hold for com- 
ponents computed in some Eulerian reference system. For instance, for the 
mixed components (6 i?) e, (e fy)P and E i! we have: 

i.e. 

[a;: _ 2 (eiP)P] [s;j. - 2 (ekj. )“I = 6;! - ZeiJ (3 

eif = (e;j)” + (e;j)p - 2 (e;P )p (e;! )” (5) 

Thus, if the deformations are described by the quantities 6 ii, (c if)” 
and kjj)! then, for finite deformations, the elastic deformations are 
not equal to the difference between the total and the plastic deforma- 
tions. This effect is also apparent when the elastic deformations are 
small, as long as the plastic deformations are finite. 

Various functions of the tensor c can be employed as the deformation 
characteristic. If the total deformations are described by the tensor 
T = j(E). then it follows from conditions (1) and (2) that 
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Te = f (E~)~ TP =I: f (sP) 

One can, for instance, use the “strain” tensors E and “true deforma- 
tion” tensors Ii, which are given by the formulas 

E&&~&Za?=&+%j, H Z-T - f In (G - 2s) 71= hij?Gj (6) 

The principal values of these tensors are especially simply related 
to the initial Zp and the final li length of the element lying along 

the ith principal axis of the deformation tensor 

The values E;i and /ci are often used in experimental work, The elastic 
and plastic deformations should then be determined by the formulas 

and also 

Hes_$ln(G_28e), H"-+II,(G-~~F~), h+dn .&, 
i 

The tensors E and H are now linear functions of the deformation tensor 

b. In different problems it may be convenient to use also other functions 
of E, for instance, 8: 

The contravariant components of the tensor 6 with respect to the basis 

li can be simply expressed by means of the contravariant components of 
the metric tensor 13 with respect to the bases $+ and gi: 

Analogous equations for the corresponding covariant and mixed compo- 
nents are not satisfied. It is evident from (4) and (8) that if the 
principal axes of the elastic and plastic deformation tensors coincide, 
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i.e. the matrices 

IIs;?’ -2 (&if f 11, \js;f -2 (&” I\ 

are commutative, then the following equation holds: 

(h;!)e + (h;!)n = hi! (11) 

which relates the mixed components of the tensors: 

This will always be the case when in the process of deformation the 

principal axes of deformation of the element do not rotate. Consequently, 

when simple loadings or some forms of complex loadings are described, one 

can assume, when using the tensor H. that the sum of the elastic and the 

plastic deformations is equal to the total deformation. One should not, 

however, generalize this to the case of arbitrary deformations. Relations 

(3) and (10). on the other hand, are always correct. 

The use of the quantities c . “h .’ and 8’1 is also helpful in another con- 

text. The deformation tensors s ould be so chosen that the stress- 

deformation relations would have a most convenient form. The character- 

istics of these relations are largely determined by thermodynamics; in 

particular, the expression for the elemental work of the internal forces 

has a greater meaning. It is well-known that the elemental work of the 

internal forces per unit mass is equal to 

d.4(i) z - $ paP(Q 

Here p is the density of the material p = p”~a^& = *P 
P,$3 is the 

stress tensor, 6 

basis G”. 
+ are the covariant components of the tensor e with the 

The work dA(‘) can be expressed just as simply by the introduction of 

cap; then we have 

d/l(i) = - $. pa&@ 
(13) 

If the material is such that the principal axes of the stress tensor 

coincide with the principal axes of the deformation tensor (as. for in- 

stance, in the isotropic elastic body), then 

(1’1) 
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In the converse case this is not true, and one can show than that a 
tensor L= l;fGisi= f(e) does not exist which would satisfy the equation 

The representation of the work of the internal forces in the form (12) 
(13) or (14) leads to the fact that the corresponding components of the 
tensor (l/p)P possess a potential and are derivatives of the free energy 
with respect to the elastic deformations. 

Thus, of all the above-studied deformation characteristics, the 
quantities cap, gap and. to a limited extent, hip possess two convenient 
properties: 

1. The laws of elasticity for an arbitrary elastic-plastic medium are 
represented in terms of these variables in most symmetric form as 

-$ PaF z --.-!!I or 
aF aF 

a (~4” ’ 
fP.a=(qjq’ or 

+a; - ~ 
*F _- a (h&f je (Is) 

(The last relation holds when (14) is correct). 

2. The elastic deformations are equal to the difference between the 
total and the plastic deformations, and thus it is convenient to repre- 
sent graphs in the form “stress versus total deformation.” Actually, the 
unloading lines on these diagrams give a graph of the laws (15) shifted 
with respect to the origin by the amount of the plastic deformations. 

In some cases, however, the values caP and eaB are not the most con- 
venient characteristics of the deformations. 

For instance, let us analyze the problem of the influence of the 
plastic deformation upon the elastic properties of the material. We shall 
show by means of a simple example that the correct choice of the deform- 
ation characteristic is of essential importance. 

Let us study a simple stretching of a cylindrical specimen which has 
an initial length IO. Assume that 1 is its final length, 1* is the cor- 
responding residual length, and the deformation of the sample is charac- 
terized by a strain E = (I - lo) lo. Then (according to conditions (1) 

and (2)) 

At the same time, let us study also three other characteristics of 
the elastic deformation 
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jj:e=b_fiP= & f 

(eJ = -+ [(I + Be), - I] (1 + &3)2 

(8”)” = +- [ 1 - (1 + I?“)-21 (1 + iP)-2 

The last two formulas give the expressions (E Il)e and (19,~) e in terms 
of the relative elongation with the condition that the axes of the 
Lagrangean coordinate system ti coincide with the distances of the prin- 
cipal deformation axes. and the axis c1 coincides with the axis of the 
specimen. 

Let us assume that the elastic relative elongations satisfy one and 
the same linear Hooke’s law independently of the magnitude of the plastic 
deformations, i.e., that Be = ka. 

Then, when using the values Fe, (E 11) e, (~!)l’)~, the laws of elasticity 
for this medium will become 

i??=k$a=k(i+.&‘s 

@II)” = + [(I + kG)2 - I] (1 + hp)2 

(0”)” = $ [I - (1 + ks)+] (1 + &‘)-a 

i.e. they clearly contain the characteristics of the plastic deformation. 

Thus, the problem of the dependence of the elastic laws on the plastic 
deformation is not only connected with the physical processes that take 
place in the material but also with the choice of the deformation charac- 
teristics. 

Let us introduce the following definition. 

The elastic-plastic medium is a medium whose elastic properties do 
not change with plastic deformation, if its free energy F can be repre- 
sented in the form 

F (iij9 (&ijleP (eijJPp X8* T) = F1 (Zij, (eijJet T, + F2 (ii,* (eij)Pe X89 T) (16) 

i*j = iij + 2 (eij)P (eij)" = + (iij -~ij) 

Here iij are the components of the metric tensor ff in the state (*), 
which plays the role of the initial state during repeated loading; the 
parameters x, are the characteristics of the plastic state; they depend 
on the path of the plastic deformation. 

For such a body. the laws of elasticity, written in the usual form. 
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contain plastic-deformation characteristics and change during the plastic 

deformation. 

The invariants of the tensor (l/p)P, however, depend in this case only 

on the invariants of the elastic deformation tensor E e and the tempera- 

ture T; the laws of elasticity written in terms of mixed components of 

the corresponding tensors do not depend on the plastic deformations: 

*.p e 1 
F1 = Fl ((Em. 1 t 3, 8Fl -j- 2, = ___ (17) 

a (d,p )” 

(‘ehfi )” and ??p are related to k df)e and Pab by the formulas 

&;f)e = ie;:)e ia;! 4-.q~;P)ei, & = pp; [6$ - 2 (e$)e] 

Thus, the influence of plasticity upon the elastic properties of the 

body is more conveniently studied if one constructs unloading lines in 

the plane of the variables (l/p)pap, (c,~)~~ Since 

(e’qe#Q-(e’e)r a. a. 

the unloading lines in the (l/p)pab. CL/~ diagrams change their form 

during plastic deformation for bodies with the elastic law (17). 

In conclusion, I wish to express my deep gratitude to L.I. Sedov for 

his numerous discussions of the problems investigated here. 

Translated by M. I,Y. 


